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Abstract

In this paper, we develop a deterministic inventory model for deteriorating items with two warehouses by minimizing
the net present value of the total cost. Deterioration rates of items in the two warehouses may be different. In addition, we
allow for shortages and complete backlogging. We then prove that the optimal replenishment policy not only exists but
also is unique under some condition. Further, the result reveals that the reorder interval based on the average total cost,
if it exists, must be longer than that derived using net present value. Finally, we use Yang’s [H.L. Yang, European Journal
of Operational Research 157 (2004) 344–356] numerical example to illustrate the model and conclude the paper with sug-
gestions for possible future research.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The classical inventory models usually assume the available warehouse has unlimited capacity. In many
practical situations, there exists many factors like temporary price discounts making retailers buy a capacity
of goods exceeding their own warehouse (OW). In this case, retailers will either rent other warehouses or
rebuild a new warehouse. However, from economical point of views, they usually choose to rent other ware-
houses. Hence, an additional storages space known as rented warehouses (RW) is often required due to limited
capacity of showroom facility. In addition, for certain types of commodities, such as medicine, volatile liquids,
blood bank, foodstuffs, deterioration is usually observed during their normal storage period. By assuming con-
stant demand rate, Sarma [7] developed a deterministic inventory model for a single deteriorating item with
shortages and two levels of storage. Pakkala and Achary [5] extended the two-warehouse inventory model
for deteriorating items with finite replenishment rate and shortages. Besides, the ideas of time-varying demand
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for deteriorating items with two storage facilities were considered by Benkherouf [1] and Bhunia and Maiti [2].
Recently, Goyal and Giri [3] presented a review of deteriorating inventory literature since the early 1990s.
They mentioned other research articles dealing with both deterioration and two-warehouse inventory prob-
lem. We suggest the reader to Goyal and Giri’s [3] article and the references given there for more details.

The RW usually results in additional cost of maintenance, material handling, etc. In these models men-
tioned above, it is generally assumed that the holding cost in RW are higher than one in OW. Again, since
the deterioration depends on preserving facilities and environmental conditions available in a warehouse, dif-
ferent warehouses may have different deterioration rates. As deterioration phenomenon is taken into account,
a unit of inventory stored incurs holding cost and deterioration cost. In a recent paper, Yang [9] proposed an
inventory model for determining the optimal replenishment cycle for the two-warehouse problem under infla-
tion, in which the inventory deteriorates at a constant rate over times and shortages are allowed. The author
assumed that inventory costs (including holding cost and deterioration cost) in RW are higher than those in
OW. However, unlike Benkherouf [1], Yang [9] supposes that the deterioration rate in RW is larger than one
in OW. Obviously, Yang’s assumption of deterioration rate contradicts the situation that the RW like ‘‘Cen-
tral Warehousing Facility’’ generally provides better preserving facility than the OW resulting in a lower dete-
rioration rate for the goods.

By assuming that the inventory system will operate for a long time, Yang [9] determined the optimal values
of the decision variables by minimizing the average total cost. However, an alternative is to determine the deci-
sion variables by minimizing the discounted value of all future costs (i.e. the net present value (NPV) of total
cost). Hadley [4] compared the optimal order quantities determined by minimizing these two different objective
functions. When the discount rate is excessive, he obtained the optimal reorder intervals with significant differ-
ences for these two models. Rachamadugu [6] developed error bounds for EOQ model by minimizing net pres-
ent value approximately. Further, Sun and Queyranne [8] investigated the general multiproduct, production
and inventory model using the NPV of the total cost as the objective function. They pointed out that the reorder
interval based on the average total cost could be much longer than that derived using net present value.

In this paper, we develop a deterministic inventory model for deteriorating items with two warehouses. As
Yang [9], we allow for shortages and complete backlogging, and assume that the inventory costs (including
holding cost and deterioration cost) in RW is higher than that in OW. The firm stores goods in OW before
RW, but clears the stocks in RW before OW. However, we minimize the NPV of the total cost as proposed
by Sun and Queyranne [8]. For generality, the deterioration rate in RW is different from one in OW. Due to
consideration towards the effect of the discount rate, which relates to the purchasing power of money, pur-
chasing cost must be included. We complement the shortcoming of Yang’s model by computing the purchase
cost instead of the deterioration cost. Then, we obtain the condition which guarantees the unique solution
exists and develop the criterion to find the optimal replenishment policy. Next, we will compare the decision
using the NPV with one using the average total cost. The result reveals that the reorder interval based on the
average total cost, if it exists, must be longer than that derived using NPV. In the last two sections, a numerical
example is discussed to illustrate the proposed model and concluding remarks are provided.

2. Notation and assumptions

2.1. Notation

To develop the mathematical model of inventory replenishment policy with two warehouses, the notation
adopted in this paper is as below:

D the demand rate per unit time
A the replenishment cost per order
c the purchasing cost per unit
r discount rate
cho the holding cost per unit per unit time in OW
chr the holding cost per unit per unit time in RW
cs the backorder cost per unit per unit time
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a the deterioration rate in OW, where 0 6 a < 1

b the deterioration rate in RW, where 0 6 b < 1

W the capacity of the own warehouse

Q the ordering quantity per cycle

B the maximum inventory level per cycle

tr the length of period during which the inventory level reaches zero in RW

to the length of period during which the inventory level reaches zero in OW

ts the length of period during which shortages are allowed

T the length of the inventory cycle

Ir(t) the level of positive inventory in RW at time t

Io(t) the level of positive inventory in OW at time t

Is(t) the level of negative inventory at time t

TC(tr,ts) the net present value of cash flows for the first cycle

NPV(tr,ts) the net present value of total cost

ATC(tr,ts) the average total cost

2.2. Assumptions

In addition, the following assumptions are imposed:

1. Replenishment rate is infinite, and lead time is zero.
2. The time horizon of the inventory system is infinite.
3. The own warehouse (OW) has a fixed capacity of W units; the rented warehouse (RW) has unlimited

capacity.
4. The goods of OW are consumed only after consuming the goods kept in RW, hence T = to + ts.
5. The unit inventory costs (including holding cost and deterioration cost) per unit time in RW are higher than

those in OW; that is, chr + bc > cho + ac.
6. Shortages are allowed and completely backlogged.

3. Mathematical formulation

Using above assumptions, the inventory level follows the pattern depicted in Fig. 1. The ordering quantity
over the replenishment cycle can be determined as
Q ¼ I rð0Þ þ Ioð0Þ � I sðto þ tsÞ ¼
D
b
ðebtr � 1Þ þ W þ Dts; ð1Þ
ordering 
quantity 
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Fig. 1. Graphical representation of a two-warehouse inventory system.
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and the maximum inventory level per cycle is
B ¼ I rð0Þ þ Ioð0Þ ¼
D
b
ðebtr � 1Þ þ W : ð2Þ
With an instantaneous cash transactions during sales, the present value of purchase cost for the first cycle can
be obtained as
c½I rð0Þ þ Ioð0Þ � e�rðtoþtsÞI sðto þ tsÞ� ¼ c
D
b
ðebtr � 1Þ þ W þ Dtse

�rðtoþtsÞ
� �

:

Hence, the present value of cash flows for the first cycle which comprises the present values of the replenish-
ment cost, purchase cost, holding cost and backorder cost, and is given as follows:
TCðtr; tsÞ ¼ Aþ c
D
b
ðebtr � 1Þ þ W þ Dtse

�rðtoþtsÞ
� �

þ chrD
rbðr þ bÞ ½rebtr þ be�rtr � ðr þ bÞ� þ choW

r þ a

þ choD
rðr þ aÞ ðe

�rto � e�rtrÞ þ csD
r2

e�rðtoþtsÞðerts � rts � 1Þ; ð3Þ
where to is a function of tr and is defined as
to ¼ tr þ
1

a
ln 1þ aW e�atr

D

� �
: ð4Þ
Let NPV(tr,ts) be the net present value of total cost over horizon [0,1). Then we have
NPVðtr; tsÞ ¼
X1
n¼0

TCðtr; tsÞe�nrðtoþtsÞ ¼ TCðtr; tsÞ
X1
n¼0

e�nrðtoþtsÞ ¼ TCðtr; tsÞ
1� e�rðtoþtsÞ

: ð5Þ
The problem is to determine tr and ts such that NPV(tr,ts) is minimized. Taking the first derivative of
NPV(tr,ts) with respect to tr and ts, respectively, we obtain
oNPVðtr; tsÞ
otr

¼ �re�rðtoþtsÞ

½1� e�rðtoþtsÞ�2
TCðtr; tsÞ

dto

dtr

þ 1

1� e�rðtoþtsÞ
oTCðtr; tsÞ

otr

¼ dto

dtr

�re�rðtoþtsÞ

½1� e�rðtoþtsÞ�2
TCðtr; tsÞ þ

1

1� e�rðtoþtsÞ
1

dto=dtr

oTCðtr; tsÞ
otr

( )
; ð6Þ
and
oNPVðtr; tsÞ
ots

¼ �re�rðtoþtsÞ

½1� e�rðtoþtsÞ�2
TCðtr; tsÞ þ

1

1� e�rðtoþtsÞ
oTCðtr; tsÞ

ots

; ð7Þ
where
oTCðtr; tsÞ
otr

¼ D
1þ aW e�atr=D

fc½e�rto � rtse
�rðtoþtsÞ� þ e�rto KðtrÞ �

cs

r
e�rðtoþtsÞðerts � rts � 1Þg; ð8Þ

oTCðtr; tsÞ
ots

¼ De�rðtoþtsÞ½cþ ðcs � rcÞts�; ð9Þ

KðtrÞ ¼
chr þ ðr þ bÞc

r þ b
ebtrþrto � erðto�trÞ
� �

1þ aW e�atr

D

� �
þ cho þ ðr þ aÞc

r þ a
½erðto�trÞ � 1�

þ cho þ ðr þ aÞc
r þ a

erðto�trÞ aW e�atr

D
; ð10Þ
and dto/dtr is defined as
dto

dtr

¼ 1

1þ aW e�atr=D
:
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The optimal solution of (tr,ts) must satisfy the equations oNPV(tr,ts)/otr = 0 and oNPV(tr,ts)/ots = 0, simulta-
neously, which implies
re�rðtoþtsÞTCðtr; tsÞ ¼
1� e�rðtoþtsÞ

dto=dtr

oTCðtr; tsÞ
otr

; ð11Þ
and
re�rðtoþtsÞTCðtr; tsÞ ¼ ½1� e�rðtoþtsÞ� oTCðtr; tsÞ
ots

; ð12Þ
respectively. Because both the left hand sides in Eqs. (11) and (12) are the same, hence the right hand sides in
these equations are equal. After some algebraic simplification, Eqs. (11) and (12) reduce to the following
cs � rc
r
ð1� e�rtsÞ ¼ KðtrÞ: ð13Þ
On the other hand, we substitute TC(tr,ts) of Eq. (3) and oTC(tr,ts)/ots = 0 of Eq. (9) into Eq. (12) and obtain
D½1� e�rðtoþtsÞ�½cþ ðcs � rcÞts� ¼ r Aþ c
D
b
ðebtr � 1Þ þ W þ Dtse

�rðtoþtsÞ
� ��

þ chrD
rbðr þ bÞ ½rebtr þ be�rtr � ðr þ bÞ� þ choW

r þ a
þ choD

rðr þ aÞ ðe
�rto � e�rtrÞ

þ csD
r2

e�rðtoþtsÞðerts � rts � 1Þ
	
: ð14Þ
Now, we want to investigate the property of function K(tr) and we have

Lemma 1. If D > aW, then K(tr) is a continuous and strictly increasing function of tr 2 [0,1], and its range is

½choþðrþaÞc
rþa ½ð1þ aW

D Þ
r
aþ1 � 1�;1�.
Proof. See Appendix A. h

From Lemma 1, to guarantee the optimal solution exists, we assume that the demand rate D is larger than
the maximum deteriorating quantity for the items in OW, aW; that is, D > aW. This result is obvious because
for the case D 6 aW, we store the items in the own warehouse is inadequate. Thus, from now on, we assume
that D > aW in this article.

Lemma 2. If K(0) P (cs � rc)/r, then the nonnegative solution of (tr,ts) which satisfies Eq. (13) does not exist.
Proof. See Appendix B. h

From Lemma 2, we see that the optimal solution exists only if (cs � rc)/r > K(0). When the inequality
(cs � rc)/r > K(0) holds, Eq. (13) implies that ts is a function of tr 2 [0,1). Taking the partial derivative of both
sides in Eq. (13) with respect to tr, it gives
ðcs � rcÞe�rts dts

dtr

¼ dKðtrÞ
dtr

> 0: ð15Þ
Thus we obtain dts/dtr > 0. From Lemma 1, K(tr) is a continuous and strictly increasing function of tr 2 [0,1),
thus we can find a unique value t̂r 2 ð0;1Þ such that K ð̂trÞ ¼ ðcs � rcÞ=r. Furthermore, because both tr and ts

must be nonnegative, the feasible solution for tr which satisfies in Eq. (13) should be chosen in the interval
½0; t̂rÞ. Therefore, we can obtain the following result: once we get the optimal value t�r 2 ½0; t̂rÞ, the optimal solu-
tions of to and ts (denoted by t�o and t�s , respectively) can be uniquely determined by Eqs. (4) and (13), respec-
tively, and given as follows:
t�o ¼ t�r þ
1

a
ln 1þ aW e�at�r

D

� �
; t�s ¼

1

r
ln

cs � rc
cs � rc� rKðt�r Þ

: ð16Þ
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Now, we are ready to derive the optimal value t�r . Motivated by Eq. (14), we let
GðtrÞ ¼ D½1� e�rðtoþtsÞ�½cþ ðcs � rcÞts� � r Aþ c
D
b
ðebtr � 1Þ þ W þ Dtse

�rðtoþtsÞ
� ��

þ chrD
rbðr þ bÞ ½rebtr þ be�rtr � ðr þ bÞ� þ choD

rðr þ aÞ ðe
�rto � e�rtrÞþ choW

r þ a

þ csD
r2

e�rðtoþtsÞðerts � rts � 1Þ
	
; tr 2 ½0; t̂rÞ: ð17Þ
After assembling Eqs. (13) and (15), the first derivative of G(tr) with respect to tr 2 ð0; t̂rÞ becomes
dGðtrÞ
dtr

¼ Dr½cþ ðcs � rcÞts�e�rðtoþtsÞ dto

dtr

þ dts

dtr

� �
þ Dðcs � rcÞ½1� e�rðtoþtsÞ� dts

dtr

� Dr½cþ ðcs � rcÞts�e�rðtoþtsÞ dto

dtr

þ dts

dtr

� �

¼ Dðcs � rcÞ½1� e�rðtoþtsÞ� dts

dtr

> 0:
Therefore, G(tr) is a strictly increasing function in the interval ½0; t̂rÞ. Because limtr!t̂�r to ¼ t̂o ¼
t̂r þ 1

a lnð1þ aW e�âtr=DÞ <1 and limtr!t̂�r ts ¼ 1, it yields
lim
tr!t̂�r

GðtrÞ ¼ lim
ts!1

D½cþ ðcs � rcÞts� � r Aþ c
D
b
ðeb̂tr � 1Þ þ W

� �
þ chrD

rbðr þ bÞ ½reb̂tr þ be�r̂tr � ðr þ bÞ�
�

þ choW
r þ a

þ choD
rðr þ aÞ ðe

�r̂to � e�r̂trÞ þ csDe�r̂to

r2

	
¼ 1:
Then we have the following results.

Lemma 3. For any given (cs � rc)/r > K(0), we have:

(a) If G(0) 6 0, then the solution t�r 2 ½0; t̂rÞ which satisfies Eq. (14) not only exists but also is unique.

(b) If G(0) > 0, then the solution t�r 2 ½0; t̂rÞ which satisfies Eq. (14) does not exist.
Proof. See Appendix C. h

Theorem 1. For any given (cs � rc)/r > K(0), we have:

(a) If G(0) < 0, then the point ðt�r ; t�s Þ which satisfies the Eqs. (13) and (14) simultaneously and t�r 2 ð0; t̂rÞ is the
global minimum point of the net present value of total cost.

(b) If G(0) P 0, then optimal t�r ¼ 0. In this case, the inventory system reduces to the one-warehouse problem.
Proof. See Appendix D. h

From Theorem 1(a), once the optimal solution ðt�r ; t�s Þ is obtained, we substitute ðt�r ; t�s Þ into Eqs. (1) and (5),
the optimal ordering quantity per cycle, Q*, and the minimum net present value of total cost NPV ðt�r ; t�s Þ are as
follows:
Q� ¼ D
b
ðebt�r � 1Þ þ W þ Dtse

�rðt�oþt�s Þ;
and
NPVðt�r ; t�s Þ ¼
D
r
½cþ ðcs � rcÞt�s �: ð18Þ
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For the special circumstance that t�r ¼ 0 in Theorem 1(b), the model reduces to the one-warehouse inventory
problem. Let chr = cho, b = a and W = 0, we can obtain the objective function from Eq. (3). Then, the optimal
solution of the one-warehouse inventory problem can be solved by using the similar arguments.

Next, we want to compare the decision using the net present value with one using the average total cost. Let
ATC(tr,ts) be the average total cost, then we have
ATCðtr; tsÞ ¼
TCðtr; tsÞ

to þ ts

: ð19Þ
Solving the necessary conditions: oATC(tr,ts)/otr = 0 and oATC(tr,ts)/ots = 0 for the minimum value of
ATC(tr,ts), we get
cs � rc
r
ð1� e�rtsÞ ¼ KðtrÞ; ð20Þ
and
Dðto þ tsÞe�rðtoþtsÞ½cþ ðcs � rcÞts� ¼ Aþ c
D
b
ðebtr � 1Þ þ W þ Dtse

�rðtoþtsÞ
� �

þ chrD
rbðr þ bÞ rebtr þ be�rtr � ðr þ bÞ

� �
þ choW

r þ a
þ choD

rðr þ aÞ ðe
�rto � e�rtrÞ

þ csD
r2

e�rðtoþtsÞðerts � rts � 1Þ: ð21Þ
It is obvious that Eq. (20) is the same as Eq. (13). By using the similar arguments as the previous section, if Eq.
(20) holds, then we have (cs � rc)/r > K(0) and ts is a function of tr, where t̂r 2 ð0;1Þ and satisfies
K ð̂trÞ ¼ ðcs � rcÞ=r. Once we get the optimal value t��r 2 ½0; t̂rÞ, the optimal solutions of to and ts (denoted
by t��o and t��s , respectively) can be uniquely determined. Next, motivated by Eq. (21), we let
ZðtrÞ ¼ Dðto þ tsÞe�rðtoþtsÞ½cþ ðcs � rcÞts� � Aþ c
D
b
ðebtr � 1Þ þ W þ Dtse

�rðtoþtsÞ
� ��

þ chrD
rbðr þ bÞ rebtr þ be�rtr � ðr þ bÞ

� �
þ choD

rðr þ aÞ ðe
�rto � e�rtrÞ

þ choW
r þ a

þ csD
r2

e�rðtoþtsÞðerts � rts � 1Þ
	
: ð22Þ
Because 1� e�rðtoþtsÞ ¼ ½erðtoþtsÞ � 1�e�rðtoþtsÞ > rðto þ tsÞe�rðtoþtsÞ, we obtain that GðtrÞ > rZðtrÞ for all tr � 0.
Therefore, if there exists a value t��r such that Zðt��r Þ ¼ 0, t��r must be larger than the value t�r such Gðt�r Þ ¼ 0.
Summarize the above arguments, we have the following result.

Proposition 1. If the solution of t��r 2 ½0; t̂rÞ which satisfies Z(tr) = 0 exists, then t��r > t�r .
From Proposition 1, if t��r exists, then it is easy to see t��o > t�o and t��s > t�s . That is, the length of the inven-
tory cycle based on the average cost is longer than one based on NPV.

4. Numerical example

To illustrate the above results, we consider the same example in Yang [9]: D = 400, W = 100, A = 100,
c = 10, cho = 0.2, chr = 0.5, cs = 2, a = 0.02, b = 0.05, r = 0.06 in appropriate units. We first portray the func-
tions G(tr) and rZ(tr) in Fig. 2. We can find that G(tr) > rZ(tr) for tr P 0. Besides, the value t��r such that
Zðt��r Þ ¼ 0 does not exist uniquely and all t��r > t�r . Therefore, it is important to take right choices of different
initial values when we search the root of the equation Z(tr) = 0 by using Newton–Raphson Method. Then, the
numerical results for NPV(tr,ts) and ATC(tr,ts) are shown in Table 1. It is clear that the reorder interval based
on the average total cost is longer than that derived using NPV, i.e. t��o þ t��s > t�o þ t�s .

By using the key parameters as Yang’s [9, Table 3], we perform a sensitivity analysis on NPVðt�r ; t�s Þ with
respect to each of the parameters r, W, cs, A, cho, chr, c, a and b by assuming the rest are fixed. We first let



Fig. 2. Graphical representation of G(tr) and rZ(tr).

Table 1
Numerical results for NPV(tr,ts) and ATC(tr,ts)

NPV(tr,ts) t�r t�o t�s Q* NPV ðt�r ; t�s Þ
0.1875 0.4359 0.4052 337.4 70447.6

ATC(tr,ts) t��r t��o t��s Q** ATCðt��r ; t��s Þ
0.7619 1.0075 1.1417 867.3 4078.1
3.3637 3.5969 5.8132 3890.6 4125.3 (saddle point)

Table 2
Sensitivity analysis on NPVðt�r ; t�s Þ
r D G(0) NPVðt�r ; t�s Þ W D G(0) NPVðt�r ; t�s Þ cs D G(0) NPVðt�r ; t�s Þ
0.02 89.85 �1.80 210632.0 20 23.28 �5.95 70706.1 0.2 �6.92 – –
0.04 39.80 �3.40 105551.0 30 23.26 �5.88 70665.3 0.5 �1.92 – –
0.08 14.70 �5.55 52838.6 40 23.23 �5.79 70627.0 1 6.41 �3.29 69244.9
0.10 9.65 �5.67 42224.7 50 23.21 �5.68 70591.1 2 23.08 �4.70 70447.6

A cho chr

60 23.08 �2.30 69541.7 0.5 23.0 �4.09 70627.6 1 23.08 �4.70 70504.8
80 23.08 �3.50 70020.6 1 22.9 �2.86 70891.8 2.5 23.08 �4.70 70590.7
100 23.08 �4.70 70447.6 1.5 22.8 �1.34 71107.1 5 23.08 �4.70 70646.0

c a b
5 28.18 �5.39 36817.8 0.01 23.11 �4.88 70382.4 0.05 23.08 �4.70 70447.6
10 23.08 �4.70 70447.6 0.02 23.08 �4.70 70447.6 0.10 23.08 �4.70 70505.3
15 17.98 �3.57 103789.0 0.05 23.01 �4.10 70631.8 0.25 23.08 �4.70 70591.4
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D = (cs � rc)/r � K(0), and then the result is presented in Table 2. Note that as cs = {0.2,0.5}, the nonnegative
solution of (tr,ts) which satisfies Eq. (13) does not exist. We know from Table 2 that NPVðt�r ; t�s Þ increases as
any of the parameters cs, A, cho, chr, c, a or b increases. However, NPVðt�r ; t�s Þ decreases as r or W increases.
5. Concluding remarks

In this paper, an inventory model is developed for deteriorating items with two levels of storage, permitting
shortage and complete backlogging. In particular, we use the NPV of total cost as the objective function for
the generalized inventory system. The analytical formulations of the problem on the general framework
described have been given. The condition which guarantees the unique solution exists is obtained and the com-
plete proof of corresponding second-order sufficient conditions for optimum is also provided. Following the
previous research dealing with the two-warehouse inventory problem, due to additional cost in RW, for exam-
ple, maintenance, material handling, etc. we assume that the unit inventory costs (including holding cost and
deterioration cost) per unit time in RW are higher than those in OW, i.e. chr + bc > cho + ac. A intuitively
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managerial implication of the assumption follows: it will be economical to consume the goods of RW at the
earliest. However, this does not mean that the firm always takes time to search a preserving facility with a
lower deterioration rate than that in OW. Hence, the condition, D > aW, is more suitable than the assumption
of deterioration rates in RW and OW described by Benkherouf [1] and Yang [9]. In addition, when the dis-
count rate r is small, we have 1� e�rðtoþtsÞ ¼ e�rðtoþtsÞ½erðtoþtsÞ � 1� � rðto þ tsÞe�rðtoþtsÞ, which implies
GðtrÞ � rZðtrÞ. Hence, the optimal solution based on average total cost will be a good approximation to the
one based on NPV. Our theoretical results could be some complements to previous research. For example,
the conditions to find the optimal solution in Yang [9] can be derived by similar methods as our Lemmas 2
and 3. Furthermore, Proposition 1 discloses the reason why the reorder interval based on the average total
cost could be longer than that derived using NPV.

The proposed model can be extended in several ways. Firstly, we can easily extend the backlogging rate of
unsatisfied demand to any decreasing function b(x), where x is the waiting time up to the next replenishment,
and 0 6 b(x) 6 1 with b(0) = 1. Secondly, we can also incorporate the quantity discount, and the learning
curve phenomenon into the model.
Acknowledgements

The authors would like to thank the editor and anonymous reviewers for their valuable and constructive
comments, which have led to a significant improvement in the manuscript. This research was partially sup-
ported by the National Science Council of the Republic of China under Grant NSC-96-2221-E-366-010.

Appendix A. The proof of Lemma 1

It is obvious that K(tr) is a continuous function of tr 2 [0,1) because K(tr) is a polynomial function of tr in
the interval [0,1). Next, taking the derivative of K(tr) with respect to tr, we have
dKðtrÞ
dtr

¼ chr þ ðr þ bÞc½ � aW e�atr

D
ebtrþrto Deatr

aW
� a� b

r þ b
½1� e�ðrþbÞtr �

� 	

þ ðchr þ bcÞ � ðcho þ acÞ½ � aW e�atr

D
erðto�trÞ:
Let
HðtrÞ ¼
Deatr

aW
� a� b

r þ b
½1� e�ðrþbÞtr �; tr P 0;
thus
dHðtrÞ
dtr

¼ Deatr

W
� ða� bÞe�ðrþbÞtr >

D
W
� ae�ðrþbÞtr ¼ a

D
aW
� e�ðrþbÞtr

� �
> a

D
aW
� 1

� �
:

If D > aW, then we know dH(tr)/dtr > 0. Therefore, H(tr) is a strictly increasing function in the interval [0,1),
which implies
HðtrÞ > Hð0Þ ¼ D
aW

> 0; for tr > 0:
Then, from the above result and Assumption 5, we know that dK(tr)/dtr > 0, for tr > 0. Therefore, K(tr) is a
strictly increasing function in the interval [0,1). The fact that Kð0Þ ¼ choþðrþaÞc

rþa ½ 1þ aW
D


 �r
aþ1 � 1� and

limtr!1KðtrÞ ¼ 1 are trivial. This completes the proof. h

Appendix B. The proof of Lemma 2

If K(0) P (cs � rc)/r, then Kð0Þ > ð1� e�rtsÞðcs � rcÞ=r for ts 2 [0,1). On the other hand, from Lemma 1,
we have K(tr) is a strictly increasing function of tr 2 [0,1). Thus it can not be found a value of tr in the interval
[0,1) such that KðtrÞ ¼ ð1� e�rtsÞðcs � rcÞ=r. This completes the proof. h
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Appendix C. The proof of Lemma 3

(a) First, we consider G(0) < 0. Since G(tr) is a strictly increasing function in the interval ½0; t̂rÞ, and
limtr!t̂�r GðtrÞ ¼ 1, by using the Intermediate Value Theorem, there exists a unique solution t�r 2 ð0; t̂rÞ such
that Gðt�r Þ ¼ 0, i.e., t�r is the unique solution which satisfies Eq. (14). Next, if G(0) = 0, then from the property
that G(tr) is a strictly increasing in the interval ½0; t̂rÞ, we see that t�r ¼ 0 is the unique value which satisfies
Gðt�r Þ ¼ 0. In the case, the inventory system reduces to the one-warehouse problem.

(b) From the property that G(tr) is a strictly increasing in the interval ½0; t̂rÞ, if G(0) > 0, then we have
G(tr) > 0 for all tr 2 ½0; t̂rÞ. Thus, we can not find a value t�r 2 ½0; t̂rÞ such that Gðt�r Þ ¼ 0. This completes the
proof. h

Appendix D. The proof of Theorem 1

(a) For G(0) < 0, since NPVðtr; tsÞ ¼ TCðtr; tsÞ=½1� e�rðtoþtsÞ�, we know that the necessary conditions for
minimum are
oNPVðtr; tsÞ
otr

¼ dto

dtr

�re�rðtoþtsÞ

1� e�rðtoþtsÞ½ �2
TCðtr; tsÞ þ

1

1� e�rðtoþtsÞ
1

dto=dtr

oTCðtr; tsÞ
otr

( )
¼ 0;
and
oNPVðtr; tsÞ
ots

¼ �re�rðtoþtsÞ

½1� e�rðtoþtsÞ�2
TCðtr; tsÞ þ

1

1� e�rðtoþtsÞ
oTCðtr; tsÞ

ots

¼ 0:
It implies that
1

dto=dtr

oTCðtr; tsÞ
otr

����
ðtr;tsÞ¼ðt�r ;t�s Þ

¼ oTCðtr; tsÞ
ots

����
ðtr;tsÞ¼ðt�r ;t�s Þ

¼ re�rðt�oþt�s Þ

1� e�rðt�oþt�s Þ
TCðt�r ; t�s Þ;
where t�o is defined as in Eq. (16). From Lemma 3(a), the solution t�r 2 ð0; t̂rÞ which satisfies Eq. (14) not only
exists but also is unique. Hence, the value t�s can be uniquely determined by Eq. (16). Furthermore, we can
obtain
o
2NPVðtr; tsÞ

ot2
r

����
ðtr;tsÞ¼ðt�r ;t�s Þ

¼ 1

1� e�rðtoþtsÞ
r

dto

dtr

� 1

dto=dtr

d2to

dt2
r

� �
oTCðtr; tsÞ

otr

þ
�

o
2TCðtr; tsÞ

ot2
r

�����
ðtr;tsÞ¼ðt�r ;t�s Þ

¼ 1

1� e�rðtoþtsÞ
r � a2W e�atr

D

� �
dto

dtr

oTCðtr; tsÞ
otr

�
þ o2TCðtr; tsÞ

ot2
r

�����
ðtr;tsÞ¼ t�r ;t

�
sð Þ

¼ De�rto

1� e�rðtoþtsÞ
dto

dtr

dKðtrÞ
dtr

����
ðtr;tsÞðt�r ;t�s Þ

¼ Dðcs � rcÞ e�rðtoþtsÞ

1� e�rðtoþtsÞ
dto

dtr

dts

dtr

�����
ðtr;tsÞ¼ðt�r ;t�s Þ

> 0;

o
2NPVðtr; tsÞ

ot2
r

����
ðtr;tsÞ¼ðt�r ;t�s Þ

¼ 1

1� e�rðtoþtsÞ
r
oTCðtr; tsÞ

ots

þ o
2TCðtr; tsÞ

ot2
s

� �����
ðtr;tsÞ¼ðt�r ;t�s Þ

¼ Dðcs � rcÞ e�rðt�oþt�s Þ

1� e�rðt�oþt�s Þ
> 0;
and
o2NPVðtr; tsÞ
otrots

����
ðtr;tsÞ¼ðt�r ;t�s Þ

¼ 1

1� e�rðtoþtsÞ
r
oTCðtr; tsÞ

ots

dto

dtr

þ o2TCðtr; tsÞ
otsotr

� �����
ðtr;tsÞ¼ t�r ;t
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¼ 1

1� e�rðtoþtsÞ
rDe�rðtoþtsÞ½cþ ðcs � rcÞts�

dto

dtr

� rDe�rðtoþtsÞ½cþ ðcs � rcÞts�
dto

dtr

� 	����
ðtr;tsÞ¼ðt�r ;t�s Þ

¼ 0
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Thus, the determinant of Hessian matrix H at the stationary point ðt�r ; t�s Þ is
detðHÞ ¼ o
2NPVðtr; tsÞ

ot2
r

����
ðtr;tsÞ¼ðt�r ;t�s Þ

� o
2NPVðtr; tsÞ

ot2
s

����
ðtr;tsÞ¼ðt�r ;t�s Þ

� o
2NPVðtr; tsÞ

otrots

����
ðtr;tsÞ¼ðt�r ;t�s Þ

" #2

¼ Dðcs � rcÞe�rðtoþtsÞ

1� e�rðtoþtsÞ
dto

dtr

dts

dtr

����
ðtr;tsÞ¼ t�r ;t

�
sð Þ
� Dðcs � rcÞe�rðtoþtsÞ

1� e�rðtoþtsÞ

����
ðtr;tsÞ¼ðt�r ;t�s Þ

¼ Dðcs � rcÞ
erðtoþtsÞ � 1

� �2
dto

dtr

dts

dtr

�����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

> 0:
Hence, the Hessian matrix H at point ðt�r ; t�s Þ is positive definite. Consequently, we can conclude that the sta-
tionary point for our optimization problem is a global minimum point.

(b) For G(0) = 0, form the proof of Lemma 3(a), we see that t�r ¼ 0 is the unique solution which satisfies
Gðt�r Þ ¼ 0. For G(0) > 0, by Eqs. (10), (13) and (17), Eq. (6) becomes
oNPVðtr; tsÞ
otr

¼ dto

dtr

�re�rðtoþtsÞ

½1� e�rðtoþtsÞ�2
TCðtr; tsÞ þ

1

1� e�rðtoþtsÞ
1

dto=dtr

oTCðtr; tsÞ
otr

( )

¼ e�rðtoþtsÞ

½1� e�rðtoþtsÞ�2
GðtrÞ

dto

dtr

:

Because dto/dtr > 0 and G(tr) is a strictly increasing function, we have oNPV(tr,ts)/otr > 0 for any tr 2 ð0; t̂rÞ,
which implies that for any fixed ts 2 [0,1), a smaller value of tr causes a lower value of NPV(tr,ts). As a result,
the minimum value of NPV(tr,ts) occurs at the boundary point t�r ¼ 0. For the special circumstance that t�r ¼ 0,
since the RW is not used, the model reduces to the one-warehouse inventory problem. This completes the
proof. h
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